Виленкин Н., Куницкая Е. Математический анализ. Дифференциальное исчисление ОНЛАЙН

Виленкин Н., Куницкая Е. Математический анализ. Дифференциальное исчисление ОНЛАЙН

Виленкин Н., Куницкая Е., Мордкович А. Математический анализ. Дифференциальное исчисление. - М., 1978. - 161 с.
Настоящее пособие является непосредственным продолжением книги Н. Я. Виленкина и Е. С. Куницкой «Математический анализ. Введение в анализ». Оно содержит изложение курса дифференциального исчисления и его приложений к исследованию функций.
ОГЛАВЛЕНИЕ
Предисловие ......................... 3
Глава 1
ДИФФЕРЕНЦИРУЕМЫЕ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ. ПРОИЗВОДНАЯ (5)
§ 1. Приращение функции...................5
1. Приращение функции (5).
2. Определение непрерывности функции в точке «на языке приращений» (6).
§ 2. Дифференцируемость функции в точке..........8
1. Определение дифференцируемости функции в точке (8).
2. Связь между непрерывностью и дифференцируемостыо функции в точке (10)
3. Производная и дифференциал (12).
4. Односторонние и бесконечные производные (15).
§ 3. Применения производной и дифференциала для решения геометрических и физических задач............18
1. Задача» о проведении касательной к графику функции. Геометрический смысл производной и дифференциала (18).
2. Геометрические приложения производной (22).
3. Применения производной в физических задачах. Механический смысл производной (24).
§ 4. Дифференцирование операций...............27
1. Дифференцирование линейной комбинации конечного числа дифференцируемых функций (28).
2. Дифференцирование произведения (31).
3. Дифференцирование частного (33).
§ 5. Дифференцирование сложной функции...........37
1. Дифференцируемость сложной функции (37).
2. Инвариантность формы записи дифференциала (40).
§ 6. Дифференцирование элементарных функций........42
1. Дифференцирование тригонометрических функций (42).
2. Дифференцирование обратной функции (45).
3. Дифференцирование обратных тригонометрических функций (46).
4. Дифференцирование показательной и логарифмической функций (48).
5. Дифференцирование гиперболических функций (52).
6. Сводка правил и формул дифференцирования (53),
7. Логарифмическое дифференцирование (54).
§ 7. Производные и дифференциалы высших порядков.....59
1. Понятие производной ti-то порядка (59).
2. Механический смысл второй производной (62).
3. Натуральная степень бинома (формула Ньютона) (63).
4. Свойства производной п-го порядка (66).
5. Дифференциалы высшего порядка (69).
Глава 2
ПРИМЕНЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ (73) § 1. Связь между ходом изменения функции и ее производной 73
1. Возрастание и убывание функций (73).
2. Экстремумы функции (74).
§ 2. Теорема Лагранжа и ее следствия............77
1. Леммы о знаке приращения (77).
2. Теорема Ролля (78).
3. Теорема Лагранжа (80).
4. Условие постоянства функции (82).
§ 3. Исследование функций .................86
1. Возрастание и убывание функций (86).
2. Исследование функций на экстремум с помощью первой производной (89).
3. Использование второй производной для исследования функций на экстремум (93).
4. Нахождение наибольшего и наименьшего значений функции на данном отрезке (94).
§ 4. Выпуклые функции...................100
1. Определение выпуклости (100).
2. Достаточные условия выпуклости (105).
3. Точки перегиба (106).
§ 5. Применение дифференциального исчисления к доказательству неравенств и решению уравнений
1. Доказательство неравенств (111).
2. Приближенное решение уравнений (115).
§ 6. Применение производных для вычисления пределов функций 111
1. Теорема Коши (120).
2. Правило Лопиталя (121).
3. Сравнение быстроты роста функций (129).
§ 7. Построение графиков функций..............131
§ 8. Кривые на плоскости..................141
1. Примеры параметрического задания кривых (141).
2. Жордановы кривые (143).
3. Связь между различными видами уравнений линий (144).
4. Дифференцирование параметрически заданных функций (146).
5. Полярное уравнение кривой (147).
6. Производная второго порядка для параметрически заданной функции (148).
7. Построение кривых, заданных параметрическими уравнениями (149).
8. Построение кривых, заданных полярными уравнениями (152).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

два × 3 =

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.