Яковлев Г. Н. Алгебра и начала анализа. Часть 2. Учебник для техникумов (1981) ОНЛАЙН

М. И. Каченовский, Ю. М. Колягин, A. Д. Кутасов, Г. Л. Луканкин, B. А. Оганесян, Г. Н. Яковлев. Алгебра и начала анализа. Часть 2. Учебник для средних специальных учебных заведений. Под ред. Г. Н. Яковлева — М.: Наука, 1981. — 338с.
Настоящая книга является второй частью учебника «Алгебра и начала анализа», написанного в соответствии с новой программой по математике для средних специальных учебных заведений. Здесь изложена теория комплексных чисел, простейшие методы интегрирования, элементы комбинаторики и теории вероятностей и теория простейших дифференциальных уравнений первого и второго порядков. Много внимания уделяется приложениям интеграла и дифференциальных уравнений к решению конкретных физических задач.
ОГЛАВЛЕНИЕ
Предисловие 8
Глава I. Комплексные числа ….. 9
§ 1. Определение комплексных чисел ………… 9
§ 2. Геометрическая интерпретация комплексных чисел. Модуль
и аргументы комплексного числа 19
§ 3. Различные формы записи комплексных чисел. Операции
над комплексными числами 25
Глава II. Неопределенный интеграл 42
§ 4. Дифференциал функции ……. …….. 42
§ 5. Неопределенный интеграл и его свойства . 47
§ 6. Методы интегрирования 51
Глава III. Определенный интеграл………… 70
§ 7. Площадь криволинейной трапеции……….. 70
§ 8. Определенный интеграл……………. 74
§ 9. Свойства определенных интегралов 76
§ 10. Методы вычисления определенных интегралов….. ’83
§ 11. Приближенные методы вычисления определенных интегралов …………………. 93
Глава IV. Приложения определенного интеграла 101
§ 12. Вычисление площадей плоских фигур с помощью определенного интеграла …… 101
§ 13. Длина дуги кривой ……………… 106
§ 14. Применение определенного интеграла при решении физических и технических задач . ……….. 110
Глава V. Функции многих переменных и кратные интегралы 125
§ 15. Функции многих переменных 125
§ 16. кратные интегралы…………… . . 134
§ 17. Приложения кратных интегралов……….. 14!
Глава VI. Комбинаторика и формула Ньютона для степени бинома……………….. 146
§ 18. Размещения, перестановки, сочетания ……… 146
§ 19. Формула Ньютона………………. 156
Глава VII. Элементы теории вероятностей …….. 164
§ 20. Случайные события. Вероятность события……. 164
§ 21. Основные теоремы теорий вероятностей и их следствия 172
§ 22. Серии независимых опытов. Формула Я. Бернулли … 187
§ 23. Случайные величины …………….. 193
Глава VIII. Дифференциальные уравнения…….. 208
§ 24. Примеры дифференциальных уравнений…….. 208
§ 25. Основные понятия и определения теории дифференциальных уравнений первого порядка………..
§ 26. уравнения с разделяющимися переменными 217
§ 27. Линейные дифференциальные уравнения первого порядка 224
§ 28. Примеры дифференциальных уравнений второго порядка 229
§ 29. Гармонические колебания…………… 235
§ 30. Линейные дифференциальные уравнения второго порядка
с постоянными коэффиинентами………… 241
Глава IX. Числовые и степенные ряды……… 250
§ 31. Числовые ряды……………….. 250
§ 32. Степенные ряды…… . . :…….. 267
§ 33. Ряды Тейлора……………….. 275
Глава X. Ряды Фурье……………… 289
§ 34. Ряды Фурье для периодических функций с периодом Т = 2pi…………………… 289
§ 35. Ряды Фурье для периодических функций с произвольным
периодом……………. 306
§ 36. Комплексная форма рядов Фурье……….. 314
Ответы …………………….. 322
Приложения…………………… 334

Поделиться ссылкой:
  • Добавить ВКонтакте заметку об этой странице
  • Мой Мир
  • Facebook
  • Twitter
  • LiveJournal
  • В закладки Google
  • Яндекс.Закладки
  • Сто закладок
  • Blogger
  • Блог Li.ру
  • Блог Я.ру
  • Одноклассники
  • RSS

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Наш сайт находят по фразам:

×