Леонтьева Т. А. Лекции по теории функций комплексного переменного ОНЛАЙН

Леонтьева Т. А. Лекции по теории функций комплексного переменного. — М: Научный мир, 2004, 216с., 53 илл.
Лекции по теории функций комплексного переменного рассчитаны на читателя, знакомого с основным курсом математического анализа в объеме, например, учебника «Основы математического анализа», часть П, В.А. Ильин, Э.Г. Позняк. Данный курс состоит из 18 лекций. Рассматриваются такие фундаментальные понятия, как непрерывность, дифференцируемость и интегрируемость функций комплексного переменного. Изучаются вопросы теории аналитических и гармонических функций и применение этой теории к конформным отображениям. Изучение свойств гармонических функций и их разложение в ряды Фурье согласуется с изложением теории рядов Фурье в курсе математического анализа. Рассмотрены также вопросы операционного исчисления и его связь с решениями дифференциальных уравнений и уравнений в частных производных. Лекции содержат около 50 задач теоретического характера.
Данное пособие будет полезно также студентам и аспирантам технических университов и вузов, изучающих курс ТФКП.
Оглавление
Предисловие…………………… 6
1 Комплексные числа и их свойства.
Множества на комплексной плоскости……………. 9
2 Функции комплексного переменного. Непрерывность и дифференцируемость. Геометрический смысл аргумента и модуля производной……………………………… 21
3 Элементарные функции комплексного переменного. Интегрирование функций комплексного переменного. Интегральная теорема Коши………………………. 34
4 Интегральная формула Коши. Интеграл типа Коши. Теорема Морера……………….49
5 Гармонические функции. Принцип максимума модуля аналитической функции. Принцип максимума гармонической функции…….. 62
6 Числовые и функциональные ряды………………… 71
7 Теорема единственности аналитических функций. Разложение гармонических функций в ряды……… 84
8 Многозначные функции. Аналитическое продолжение………………………. 91
9 Аналитическое продолжение через границу области и через разложение в степенные ряды. Понятие поверхности Римана………………………100
10 Ряды Лорана. Изолированные особые точки………………………109
11 Вычет аналитической функции. Теорема о вычетах. Вычисление интегралов с помощью теоремы о вычетах……………………….121
12 Логарифмический вычет. Принцип аргумента. Теорема Руше………………….132
13 Конформные отображения. Основные принципы конформных отображений……140
14 Дробно-линейное невырожденное преобразование и его свойства……………….148
15 Конформные отображения, осуществляемые функцией Жуковского, элементарными функциями (zn, ez, cos z, tg z)………157
16 Задача Дирихле для оператора Лапласа……………166
17 Интеграл Лапласа и его основные свойства………..179
18 Применение преобразования Лапласа решению дифференциальных уравнений в частных производных….192
Биографические справки…………….203
Список литературы……………….206
Предметный указатель……………..208

Поделиться ссылкой:
  • Добавить ВКонтакте заметку об этой странице
  • Мой Мир
  • Facebook
  • Twitter
  • LiveJournal
  • В закладки Google
  • Яндекс.Закладки
  • Сто закладок
  • Blogger
  • Блог Li.ру
  • Блог Я.ру
  • Одноклассники
  • RSS

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Наш сайт находят по фразам:

×